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Consideration is given to a mathematical model of the nonseparating nonstationary motion of an
ideal compressible gas in a pipeline with a variable cross section. A method which enables one to
calculate changes in the pressure, density, and velocity at the sites of contraction and expansion of
the pipeline without going beyond the scope of a one-dimensional model is presented.

1. Dynamic processes in pipelines are of considerable importance in solving diverse engineering prob-
lems. The characteristics of flow that are due to the nonstationarity of the stream must be taken into account,
for example, near the sources of pressure jumps, in calculating the strength characteristics of pipe walls, for
an accurate calculation of local resistances where parts which disturb the rectilinearity of the generatrix of the
pipeline are present, and at the sites of decrease or increase in the pipe diameter. The existing two-dimen-
sional methods for calculating the parameters of a gas in the case of flow in channels are described, for
example, in [1, 2]; however, they require that the calculation time be increased, especially when the problem
of gas flow is repeatedly solved as part of a more complex problem. One-dimensional schemes, because of
the smaller number of computer operations at each time step and the better stability that enables one to cal-
culate with a larger time step, yield a substantial gain in time up to one order of magnitude. Furthermore, in
certain cases the two-dimensionality of the flow is used just to calculate more accurately the longitudinal
velocity component. Calculations of the parameters of the nonstationary flow of a gas in flowing through the
portions of a pipeline with a variable diameter can provide an example of such problems. Below, we describe
a method which enables one to calculate changes in these parameters at the sites of contraction and expansion
of the pipeline in nonseparating flow without going beyond the scope of a one-dimensional model.

2. Let us consider the region Ω which is part of a pipeline with a variable radius. In order to calcu-
late the flow of a gas in this region, we use the determining system of nonlinear equations for an ideal com-
pressible gas, disregarding mass forces in view of their smallness as compared to pressure forces:
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As the law of conservation of energy we adopt the law of adiabatic flow of the gas
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Considering for the moment the gas flow to be dependent only on the time t and the coordinate x that
coincides with the pipeline axis and passing to Lagrangian coordinates [3], we rewrite system (1)−(3) in the
form
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where ∂ ⁄ ∂t = ∂ ⁄ ∂t + v∂ ⁄ ∂x is the total time derivative.
Let us approximate the obtained differential system of equations by a finite-difference scheme as fol-

lows: we introduce subdivision of the x axis inside the region Ω by points xi (i = 0, ..., N); for simplicity
these points will be assumed to be uniformly distributed along the x axis at the initial time. The segment
between points xi and xi−1 will be called the cell with number i. The points xi will be considered to be related
to a moving gas so that each of them will have a velocity vi at a given instant of time. Next we will consider
that the density ρi and the pressure Pi of the gas are determined at the centers of the cells between the points
xi and xi−1. Since the cell moves together with the gas, no substance is transferred through its boundaries.
Then, taking into account that the motion is one-dimensional, we can rewrite the equation of conservation of
mass (4) for each cell in the form

mi = ρi Vi = ρi (xi − xi−1) = const ,   i = 1, ..., N . (7)

Here Vi acts as the cell volume. Considering this relation at two different instants of time tn and tn+1, we
obtain
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where the superscript denotes the corresponding instant of time while the subscript denotes the number of the
point on the x axis.

The coordinates xi
n+1 are determined from the formula
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Calculating the integral from (9) according to the left-hand rectangular formula, we arrive at the relation

xi
n+1 = xi

n + vi
n dt , (10)
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where dt = tn+1 − tn.
Since the cells move together with the medium, we must track the conditions of membership of a cell

in the calculated region. If the cell is totally beyond the region Ω, we can exclude it from consideration. If,
conversely, it penetrates into Ω to a distance larger than its width we must add another cell. By doing so one
prevents the cases where all cells will go beyond the region Ω (in the case of constant flow in one direction)
or where all cells will shift toward the center of the region (meeting of two compressional waves).

3. We now take into account the radius r of the pipeline as a function of the longitudinal coordinate.
Let r = f(x). Instead of one-dimensional cells, we will use three-dimensional ones formed by the pipeline wall
and the cross sections through the points xi. Each such cell is a body of revolution that will be approximated
by a frustrum of a cone in view of the smallness of the length. Proceeding from the law of conservation of
mass, we require that, in motion of such a three-dimensional cell, the mass of the gas be preserved in it. In
this case, formula (8) can be rewritten in the form
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where Ri = max (f(xi), f(xi−1)) and ri = min (f(xi), f(xi−1)) are the radii of the large and small bases of the cone
by which the cell is approximated. It should be noted that this formula is also correct in the case where Ri =
ri, i.e., the cell is a cylinder. Thus, the density is changed in each cell not only because of the presence of
compressional and rarefaction waves in the gas but also because of the change in the radius of the channel
along which the gas is flowing. The change in the density in the continuity equation causes the velocity in
the equation of motion and the pressure in the equation of state to change.

The remaining equations (5) and (6) are approximated in the following manner: for Eq. (5)
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where x~i = 0.5(xi + xi−1), i = 1, ..., N; for Eq. (6)

Pi
n+1 = P0 





ρi
n+1

ρ0





γ

 ,   i = 1, ..., N .
(13)

Equations (11)−(13) are a calculational scheme for modeling the flows of an ideal compressible gas in pipe-
lines with a variable diameter.

It should be noted that this modification of the Lagrangian grid method is suitable for channels in
which the change in the shape has no substantial effect on the direction of the average-over-the cross section
velocity. The term "substantial" depends on the concrete problem. An example can be provided by the mod-
eling of the gas flow in a branch pipe where the direction of motion changes by 45−90o. In this case, a
nonzero radial projection of the velocity that changes the general pattern of the flow appears on the portion
of rotation.

4. In order to check the model proposed, we solved the problem of nonstationary escape of a gas
from a half-open cavity. A similar problem has been solved in [4] using S. K. Godunov’s two-dimensional
scheme. We consider three conic closed cavities of length L (cylindrical (Fig. 1a), divergent (Fig. 1b), and
convergent (Fig. 1c) cavities) filled, at the initial instant of time, with compressed gas. Upon the instantane-
ous breaking of the shell on the section of the cavity, we investigated fluctuations of the gas pressure at its
bottom. The length of the region was selected from the condition of equality of the time in which the distur-
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bance wave reaches the bottom of the cavity obtained in this work and the time obtained in [4]. To check the
stability and reliability of the model, we performed the calculations in several stages with a gradual decrease
in the initial step of the grid. Once the decrease in the step ceased to have an effect on the solution, we
stopped the calculations. But for this minimum step, too, the total time of calculation according to the pro-
posed scheme turned out to be shorter than the time obtained according to the Godunov method.

We adopted the following initial data:
cavity length L = 1 m,
ratio of the cavity length to the average diameter L/r = 3 for a cylindrical cavity and L/r = 10 for a

conic cavity,
pressure in the cavity P = 0.4 Mpa,
initial velocity of sound c = 300 m/sec,
adiabatic exponent γ = 1.25,
pressure of the ambient medium P0 = 0.1 MPa.
The calculations according to the method proposed showed good qualitative agreement between the

obtained values of the gas parameters and the results from [4]. An exception is the initial period of escape
until the rarefaction wave reaches the bottom. However, in this time interval, the velocity of escape is the
highest. This maximum of the velocity corresponds to the largest values of its radial component, especially
near longitudinal walls where the multidimensionality of the flow manifests itself earlier and to the greatest
extent, which reduces the accuracy of the calculations. Plots of pressure fluctuations at the bottom of the
cavity are presented in Fig. 2. The results of calculations by a modified Lagrangian-grid method are denoted
by the solid lines, while those according to the Godunov two-dimensional scheme are shown by the dashed
lines. On all the plots the time is calculated in seconds. Figure 2a presents pressure fluctuations at the bottom
for a cylindrical region as the standard of the error of the method proposed; Fig. 2b and c shows pressure
fluctuations for divergent and convergent regions respectively.

Fig. 1. Calculated regions of the flow.

Fig. 2. Standard calculation of the flow in cylindrical (a), convergent (b)
[1) dav = 0.11; 2) 0.33], and divergent (c) [1) dav = 3; 2) 1.5] regions. P,
MPa; t, sec.
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Curves 1 and 2 in Fig. 2b reflect the cases where the ratio of the diameters on the section and at the
bottom of the cavity dav is equal to 0.11 and 0.33 respectively. It is obvious that the presence of convergence
leads to a decrease in the amplitude of the pressure fluctuations just as in [4]. We were unable to achieve the
nonoscillating process of escape of the gas (dashed curve 1) in the calculations; however, it is necessary to
note that in this case the boundary diameters of the cavity differ by approximately a factor of 10, and this
yields a substantially multidimensional character of the flow which cannot be described within the framework
of a one-dimensional model. However, already for a diameter ratio of 0.33 the results are in good agreement.

Curves 1 and 2 in Fig. 2c reflect the cases where the ratio of the diameters on the section and at the
bottom of the cavity is equal to 3 and 1.5 respectively. As is indicated in [4], an increase in the divergence
of the cavity leads to an increase in the amplitude of pressure fluctuations, up to the shock loading of the
bottom. The similar escape of the gas (Fig. 2c, curve 1) is also substantially multidimensional, and the modi-
fied Lagrangian-grid method yields just qualitatively acceptable results. However, already in the case of the
average divergence where the condition of the nonseparating motion of the gas along the channel walls is
ensured [5], calculation results for the two-dimensional scheme and the proposed method coincide.

It should be noted that the problem considered is not only multidimensional but substantially nonsta-
tionary as well, especially in the case of a divergent region, since a pressure drop of 0.4 MPa at a rather
small length is not characteristic of the flow in pipelines. In this connection, the above disagreement of the
results is maximum for this class of problems; hence for the flows in pipelines where subsonic nonseparating
flows are realized, the accuracy of the calculations will be higher.

The proposed modification of the Lagrangian-grid method yields good accuracy of calculations com-
parable with two-dimensional methods for the cases where the relative change in the diameter of the pipeline
is within 0.3−1.5 of the average diameter and the flow is nonseparating in nature and also requires less com-
puter time in calculations.

NOTATION

ρ, density; v, velocity; P, pressure of the gas; ρ0 and P0, parameters of the gas in the atmosphere; γ,
adiabatic exponent; t, time; x, coordinate along the region of gas flow; Ω, investigated region of the flow; L,
length of the pipeline; xi, coordinates; vi, velocities of the moving boundaries of the cells of the calculational
scheme; mi, ρi, and Pi mass, density, and pressure of the gas inside the calculational cells; tn, running instant
of time; Vi, volume of the cell with the number i; dt = tn+1 − tn, time step; N, number of points in the
subdivision of the x axis; s, variable of integration.
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